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Quantum fluctuations in a quantum dot array in the
regime of ferroelectric phase transitions
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Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090
Novosibirsk-90, Russia

Received 29 November 1995

Abstract. Quantum fluctuations in a molecular-like array of quantum dots undergoing
ferroelectric (antiferroelectric) phase transitions are considered. We calculate the spectrum of
collective excitations and investigate the behaviour of soft modes in the vicinity of the phase
transitions. The amplitude of quantum fluctuations as a function of parameters of the system
is found. We show that an external magnetic field can induce phase transitions and suppresses
quantum fluctuations.

1. Introduction

Spontaneous electron polarization of two-dimensional arrays of quantum dots is discussed
in the current literature [1, 2, 3, 4]. Such a phenomenon may arise from interdot Coulomb
interaction and was predicted for quantum dot arrays with a parabolic confinement [1, 2]
and for the arrays with a complex elementary cell [3, 4]. In particular, the authors of [3]
have considered so-called quantum cellular automata based on Coulomb interaction between
quantum dots. A molecular-like array of quantum dots has been proposed in [4] to show
the possibility of ferroelectric (antiferroelectric) phase transitions.

In the present paper, we exploit the model of a molecular-like array of quantum dots
[4] to study quantum fluctuations in the ferroelectric (antiferroelectric) state. Quantum
fluctuations play an important role in the problem of phase transitions [5], because they
may, in principle, destroy the ferroelectric ordering. We show in this paper that, despite
fluctuations, ferroelectric (antiferroelectric) phases can exist in the molecular-like array of
quantum dots with strong Coulomb interaction between elementary cells. In addition, we
consider the effect of an external magnetic field and show that it results in stabilization of
ordering in an electron system.

2. The model

We consider two-dimensional (2D) periodical structures of paired quantum dots
(‘molecules’) depicted in figure 1(a) (triangular lattice) and figure 1(b) (square lattice).
Within each molecule the electrons move in the double-well potential. We neglect the
tunnelling between different molecules and suppose the intramolecular tunnelling (between
the neighbouring dots) to be sufficiently small. This allows us to use the tight-binding
approximation for calculating the molecular wave function. We suppose that there is only
one electron per an elementary cell and take into account the Coulomb interaction between
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Figure 1. Molecular-like lattices of quantum dots: (a) the triangular lattice with ferroelectric
arrangement; (b) the square lattice with antiferroelectric arrangement.

‘molecules’. Coulomb interaction will be treated in the dipole–dipole approximation, which
is valid in the limitL � d, whereL is the lattice period andd is the distance between dots
in a molecule. It was shown in our previous paper [4] that the ground states of triangular
and square lattices of paired quantum dots are ferroelectric and antiferroelectric, respectively
(figure 1).

The Coulomb interaction between molecules creates an electrostatic electric fieldF int (r)

that can lead to the electron polarization of molecules. In the tight-binding approximation,
the dipole moment of a molecule in the lattice siteα is straightforwardly derived on the
basis of a two-level model:

Pαx = e〈xα〉 = ed

2

1α√
12

α + 4V 2
tanh

δEα

2T
1α = edF int

x (Rα) (1)

wherer = (x, y) is the 2D radius vector,ex is the molecular axis,Rα is the lattice vector
corresponding to the centre of theα-molecule,xα = x −Rαx , V is the tunnelling amplitude,
δEα = √

4V 2 + 12
α, T is temperature, and ¯h is assumed to be unity.

The absolute value of the spontaneous electric field for ferroelectric (antiferroelectric)
states in corresponding lattices (figure 1) at any lattice site is

F int
x = Ci

edPx

εL3
(2)

where the indexi can betr and sq for triangular and square lattices, correspondingly,
Ctr = 5.5 andCsq = 5.1, andε is the background dielectric constant. The spontaneous
electric moment is determined by the equation

γCi

2√
12/V 2 + 4

tanh
δE

2T
= 1 (3)

whereγ = e2d2/(4V L3ε). A nontrivial solution of this equation exists ifCiγ tanhV/T >

1. The phase transition temperature is given by

T0 = 2V
/

ln

(
γCi + 1

γCi − 1

)
(4)
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(see, e.g., [5]). We now estimate the temperature of the phase transition for the lattice of
GaAs quantum dots with parametersL = 700Å, d = 200Å andε = 13. Using equation (4)
we haveT0 ' 2 K in the limit of small tunnelling amplitudesV � Cie

2d2/(4εL3), when
T0 ' Cie

2d2/(4εL3).

3. The spectrum of collective excitations

Our next goal is the response function of the quantum dot lattice. Iff0 exp(−iωt + iq ·r) is
the external electric field, the effective field at each lattice site isf0+find , wherefind takes
into account the contribution of surrounding cells. In the self-consistent-field approximation
the fieldfind is expressed via the dipole moments of elementary cells. It is convenient to
use the Fourier transformation

P ind
x (q, ω) =

∑
α

eiq·RαP ind
αx (5)

whereP ind
αx is the moment induced by the external electric field in theα-molecule. Using

the linear-response theory we find the induced dipole moment

P ind
x (q, ω) = − κ

ω2 − ω2
i (q)

f0x

κ = e2d2 2V 2 tanh(δE/2T )√
12 + 4V 2

(6)

where the frequency of collective excitations is

ω2
i (q) = 4V 2 + 12 − γ

8V 3 tanh(δE/2T )√
12 + 4V 2

si(q). (7)

The q-dependence of the collective mode frequencyωi is determined by the function

si(q) = L3
∑

α

eiq·Rα
2R2

αx − R2
αy

R5
α

. (8)

The dispersion for temperaturesT > T0 is written as

ω2
i (q) = 4V 2

(
1 − γ tanh

(
V

T

)
si(q)

)
(9)

where the second term is the so-called depolarization shift. In the regime of the phase
transition T < T0, we have to take into account a nonzero value of1 in equation (7).
Using equation (3), we may write the collective excitation dispersion in the regime of the
phase transition in the form

ω2
i (q) = 4V 2

(
1 − si(q)

Ci

)
+ 12. (10)

Note that the functions(q) has the following properties:Ctr = str (0), Csq = ssq(eyπ/L)

and Ci = max(si(q)). Using these properties, one can see thatω2
i (q) > 0 for any

temperature. The latter confirms our choice of ground states for triangular and square
lattices.

The character of the ordered phase can be understood by analysing the dispersion of
collective excitations in a system. The dispersion laws of collective excitations in triangular
and square lattices at the temperatureT0 (equation (4)) are shown in figures 2 and 3. In
the molecular-like system only anx-component of the polarization vector is possible. This
is why the modes withq||ex are longitudinal, while the modes withq||ey are transversal.
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Figure 2. Dispersion of collective excitations in the triangular lattice at the temperature of the
ferroelectric phase transition.

Figure 3. Dispersion of collective excitations in the square lattice at the temperature of the
antiferroelectric phase transition.

One can see that the collective excitation frequency of the triangular lattice tends to zero for
q → 0. In the case of the square lattice the momentum corresponding to zero frequency is
(π/L)ey and relates to the transversal mode. Thus, triangular and square lattices demonstrate
ferroelectric and antiferroelectric phase transitions, respectively. In the vicinity of phase
transitions, the frequencies at the critical points of dispersion are proportional to

√|T − T0|.
It is interesting to study the dispersion of collective modes near the critical points atT = T0.
By using equation (7) and some properties of the functions(q), we have forT = T0

ω2
tr = a

q2
x

q
+ bq2

y q ' 0

ω2
sq = a′q2

x + b′(qy − π/L)2 q ' (0, π/L)

(11)
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Figure 4. Spontaneous polarizationP (open circles) and the amplitudes of quantum fluctuations√
P̃ 2 (closed circles) as functions of temperature for the triangular lattice (TL) and square lattice

(SL) (γ = 3, P0 = ed/2).

wherea andb are constants. It is seen from equation (11) that the frequency of the triangular
lattice ωtr is not analytical near the critical pointq = 0 and is proportional to

√
q when

qyL � qxL � 1. In the square lattice the frequencyωsq shows acoustical-like behaviour
near the boundary of the Brillouin zone.

4. Quantum fluctuations

In this section we calculate the correlation functions in an effort to understand the role of
fluctuations in the presence of ferroelectric (antiferroelectric) ordering.

The quantum fluctuations in the system can be described by the correlation function
〈x̃2

α〉, wherex̃α = xα − 〈xα〉. To find this function, we may use the fluctuation-dissipation
theorem:

S(q, ω) =
∫

eiωt 〈x̃∗(q)x̃(q, t)〉 dt

2π
= −n(ω) + 1

πe2
ImF(q, ω) (12)

where the response functionF(q, ω) can be written asF(q, ω) = κ/(ω2 − ω2
i ) (see

equation (6)). By using equation (12), we get the amplitude of fluctuations of the dipole
momentP = exα:

〈P̃ 2〉 = 1

N

∑
q

κ

ωi(q)

(
n(ωi) + 1

2

)
(13)

whereN is the number of elementary cells in the 2D system.
We note that the mean squared fluctuation of the dipole moment (13) remains finite

for any temperature excepting, possibly, the phase transition temperatureT0, because all
frequenciesωi(q) are nonzero forT 6= T0. The latter distinguishes our system from a 2D
Wigner crystal, where the acoustical-like mode destroys the long-range order of an electron
lattice [6].

Numerical results for theT -dependence of the correlation function are shown in figure 4
for the parameterγCi = 3. If γCi � 1, the amplitude of fluctuations is much less than the
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average spontaneous dipole momentumP in the temperature regionT0−T ' T0 and exceeds
P in the near vicinity of the temperature of the phase transition when(T0−T )/T0 ' 1/(γCi).
In the case whereγCi � 1 andT0 − T ' T0, we may use the approximation√

〈P̃ 2〉/P0 = 1√
2Ciγ

= V√
2CiEc

(14)

whereP0 = ed/2 andEc = e2d2/(4εL3) is the characteristic energy of Coulomb interaction

between elementary cells. One can see that the ratio
√

〈P̃ 2〉/P0 decreases on reducing the
tunnelling amplitude and with increasing Coulomb interaction between elementary cells.
Note that the constantCi plays the role of the effective number of interacting elementary

cells. The dependence
√

〈P̃ 2〉 ∝ 1/Ci is typical for fluctuations in ferroelectric crystals [5].
Thus, we may conclude that ferroelectric (antiferroelectric) phases are stable ifγCi � 1
and the temperature is not too close toT0.

For the parameterCiγ � 1 the amplitude of fluctuations in the triangular lattice is close
to that for the square lattice except in the near vicinity of the temperatureT0 (see figure 4).

By using equations (11) and (13), one can show that the value of
√

〈P̃ 2〉/P0 in the triangular
lattice remains finite even atT = T0, while the same value in the square lattice becomes

infinite in the limit N → ∞:
√

〈P̃ 2〉/P0 ∝ ln N whenT = T0. These facts are connected
with different behaviours of the dispersion law (11) for triangular and square lattices.

5. The influence of the magnetic field

We now briefly consider the effect of high magnetic fields on phase transitions in a
molecular-like array of quantum dots. It is known that the magnetic field may lead to
stabilization of the electron Wigner crystals [6] and may suppress quantum fluctuations
in quantum dots [7]. In [7], this fact has been demonstrated numerically for two
anisotropic quantum dots. In our model, the magnetic fieldB has influence only on
the tunnelling amplitudeV (B). We may expect that the tunnelling amplitude decreases
with increasing magnetic field, because the magnetic field leads to additional localization
of electrons. In high magnetic fields the tunnelling amplitude is expected to behave as:
V (B) ∝ exp(−d2/2l2

c ), wherelc is the magnetic length. Just for a qualitative illustration
of this statement let us consider the appropriate 1D model, in which the potential energy of
2D electrons depends only onx:

U(x) = −u0[δ(x − d/2) + δ(x + d/2)] u0 > 0. (15)

The magnetic fieldB is parallel to the 0z-direction. The exact solution of such a problem
is expressed via the parabolic cylinder functionsDp(ξk) and Dp(−ξk), where ξk is the
dimensionless coordinate of the Landau oscillator:ξk = (x − l2

c ky)/ lc, ky is the momentum
in the y-direction,p = E/ωc − 1/2, andE is the energy. The dispersion equation forE is
straightforward (we give it here only forky = 0):

D′
p(d/lc) + D′

p(−d/lc) = −u0

ωc

[Dp(−d/lc) ± Dp(d/lc)] (16)

where D′
p(ξ) = dDp(ξ)/dξ . For large magnetic fields, whenlc � d, we have to use

the asymptotics of the functionDp(ξ). Then one can see that two rootsE1, E2 of the
dispersion equation become closer to each other whenB increases, in accordance with the
formula E1 − E2 ∝ exp(−d2/2l2

c ). Thus, the magnetic field enlarges the polarizability of
the molecular-like quantum dot that facilitates the phase transition.
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Let us assume that the phase transition is not possible at zero magnetic field,
i.e. γCi tanh(V/T ) = (Ec/V )Ci tanh(V/T ) < 1 for B = 0. On increasing the magnetic
field we may satisfy the condition of the phase transition because of decreasing the tunnelling
amplitude. Thus, the magnetic field is able to induce the phase transition. In the presence
of ferroelectric (antiferroelectric) ordering the amplitude of fluctuations is proportional toV

(see equation (14)) and, consequently, can be strongly suppressed in high magnetic fields.

6. Conclusions

We have calculated the spectrum of quantum fluctuations in a molecular-like array of
quantum dots. The quantum fluctuations do not destroy ferroelectric (antiferroelectric)
ordering if the energy of Coulomb interaction between elementary cells exceeds the
tunnelling amplitude. It is shown that the external magnetic field can lead to a stabilization
of ferroelectric (antiferroelectric) states.
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